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Abstract 
Anti-infectious activities of bacterial Zn2+-induced peptidoglycan autolysins and viral zinc-finger fusion proteins are respectively 

discussed against both bacterial and viral infections. Bacterial peptidoglycan (PGN) autolysin AmiA for S. aureus amidase is acted 
on PGN binding and cleavage that amiA distinguishes PGN mostly by the peptide, and cleavage is facilitated by a zinc-activated 
molecule. The autolytic activity of the recombinant amidase of the Aas (autolysin/adhesin of Staphylococcus saprophyticus) is 
inhibited and is necessary for the C-terminal GW repeats, not the N-terminal repeats. AmiB catalyzes the degradation of PGN in 
bacteria, resulting in a marked increases of sensitivity to oxidative stress and organic acids. Amidase activity of amiC controls cell 
separation and PGN fragments release. In these autolysins, zinc-dependent PGN autolysin of amidases may be enhanced and induced 
anti-bacterial activities.

Lytic amidase autolysin LytA associates with the cell wall via its zinc-binding motif. The LytB PGN hydrolase responsible 
for physical separation of daughter cells cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic bond of PGN building units. LytC, LytD, 
and LytF are expressed in the same subpopulation of cells and complete flagellar synthesis. Thus,autolysin mediated bacteriolys-
isinduced bacterial cell death can contribute to the bactericidal activities.

Enveloped viruses enter cells and initiate disease-causing cycles of replication that in all cases virus-cell fusion is executed 
by one or more viral surface glycoproteins denoted as the fusion protein, in which the structure and mechanisms on viral membrane 
fusion protein are important problems. The novel EBV-induced zinc finger gene, ZNFEB, including its intron less locus and human 
protein variants, controls entry and exit from cell cycling in activated lymphocytes. The designed polydactyl zinc finger protein is 
prepared consiting HIV-1 type integrase fused to the synthetic zinc finger protein E2C that the integrase-E2C fusion proteins offer 
an efficient approach and a versatile framework for directing the integration of retroviral DNA into a predetermined DNA site. The 
zinc-finger antiviral protein (ZAP) specifically inhibits the replication of certain viruses and promotes viral RNA degradation. Zinc 
finger protein Tsip1 controls Cucumber mosaic virus (CMV) RNA replication. The zinc-finger protein ZCCHC3 binds RNA and 
facilitates viral RNA that ZCCHC3 is a co-receptor for the retinoic acid-inducible gene-1 (RIG-1) and antigen MDA5 which is 
critical for RIG-1 like receptor (RLR)-mediated innate immune response to RNA virus. The membrane fusion reaction, membrane 
interaction, conformational changes of specialized virus envelope proteins, and refolding reactions of specific fusion proteins have 
been discussed. Anti-viral activities of zinc-finger protein, zinc-binding domain, and membrane fusion protein are recognized by 
which highly diverse fusion proteins have converged on the same overall strategy to mediate a common pathway of membrane fusion, 
causing to lead enhancement of the anti-viral activity.
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Abbreviations
Aas  :  autolysin/adhesin of Staphylococcus 
saprophyticus 

ABC  : ATP-binding cassette

APC  : antigen presenting cell

A. stephensi : Anopheles stephensi

B. abortus : Brucella abortus 

B. subtilis : Bacillus subtilis 

CBDs  : cell wall binding domains

CBPs  : choline binding proteins

C. difficile : Clostridium difficile

CKD  : Chronic Kidney Disease

CMV  : Cucumber mosaic virus

E. coli  : Escherichia coli

E. faecalis : Enterococcus faecalis

ETEC  : Entero-toxigenic E. coli

Eps  : Zinc dependent endopeptidases

FnBPs  : fibronectin-binding proteins

Gas  : group A streptococcus

GelE  : gelatinase

HCV  : hepatitis C virus

HD  : hemodialysis

HIV-1  : Human immunodeficiency virus type 1 

M. catarrhalis : Mora-xella catarrhalis

MCPs  : Metallocarboxypeptidases 

MIBRs  : most probable immuno-protective 
B-cell epitope regions

MRB  : multidrug bacteria 

ORSs  : oral rehydration solutions 

ORT  : oral rehydration therapy

P. aeruginosa : Pseudomonas aeruginosa

PBP2a  : penicilline-binding protein2a 

PGN  : peptidoglycan

PGRPs  : peptidoglycan recognition proteins 

PSP  : plasmid stabilization protein 

RIG-1  : retinoic acid-inducible gene-1

RLR  : RIG-1 like receptor

ROS  : reactive oxygen species

Sags  : super-antigens

SasG  : S. aureus surface protein

S. aureus : Staphylococcus aureus

SBP  : solute-binding protein 

SEB  : staphylococcal entoxin serotype B

SOD  : superoxide dismutase

S. pneumonia : Streptococcus pneumoniae

SSP  : stable signal peptide

TBVs  : transmission-blocking vaccines

Tsip1  : Tsi1‐interacting protein 1

VRE  : vancomycin-resistant Enterococcus 
faecium

ZAP  : zinc-finger antviral protein

ZBD  : zinc-binding domain 

ZBL  : zinc binding lipoprotein

ZNFEB  : EBV-induced zinc finger gene 

ZnuA  : Zinc uptake A

Introduction
Zinc is the second most abundant trace metal with human 

body 2 ～ 3g, 90% in muscle and bone, and 10% other organs 
include prostate, liver, the gastrointestinal tract, kidney, skin, lung 
brain, heart, and pancreas in humans that cellular zinc underlies an 
efficient homeostatic control that avoids accumulation of zinc in 
excess. Zinc influences apoptosis by acting on several molecular 
regulators of programmed cell death and zinc deficiency caused 
by malnutrition and foods with low bioavailability, aging, certain 
diseases, and deregulated homeostasis is a far more common risk 
to human health without intoxication [1]. The role of zinc in cell 
death has apoptosis that the influence of zinc on apoptosis is tissue/
cell type, zinc concentration, and expression of zinc transporters 
and zinc-binding proteins. Host zinc homeostasis changes in 
response to bacterial infections, including production of metal 
sequestering proteins and bombardment of bacteria with toxic 
level of zinc at host-pathogen interface [2]. Apoptosis is defined 
as cell death activated by an internally controlled suicide program 
that bacteria are able to trigger apoptosis, including the secretion 
of compounds such as protein synthesis inhibitions, pore forming 
proteins, molecules responsible for the activation of the endogenous 
death in the infected cell, and super antigens [3]. Regulation of 
apoptosis is essential for normal embryonic development and for 
homeostasis in adult tissue.
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Zinc has a rather low toxicity and influences apoptosis by 
acting on several molecular regulators of programmed cell death 
which can inhibit apoptosis thereby either prolonging the survival 
of infected cells such that the production of progeny virus is 
maximized or facilitating the establishment of virus persistence. 
The influence of zinc on apoptosis is very complex that variables in 
this complex network are tissue and cell type, zinc concentration, 
expression of zinc transporters and zinc-binding proteins, oxidative 
or nitrosative stress, and the improvement of molecular opposing 
functions. The other, zinc deficiency in Chronic Kidney Disease 
(CKD) patients may be due to fecal excretion or decrease in its 
absorption that zinc concentrations were lower in hemodialysis 
(HD) patients compared to controls and Zn concentration 69.16 
μg/dL of blood in HD patients, however, revealed no correlation 
among serum Zn concentration and anemia, serum parathyroid 
hormone concentration or pruritus severity in HD patients [4].

Zinc ion killing occurs chiefly by bacteriolyses of bacterial 
cell walls due to activated peptidoglycan (PGN) autolysins such as 
amidases, endopeptidases, and carboxypeptidase against bacteria 
[5]. PGN autolysins induced anti-bacterial vaccine activity may be 
enhanced by activation of zinc dependent PGN autolysins. PGN 
autolysins are bacterial peptidoglycan degrading enzymes that 
these muropeptides can be produced or modified by the activity of 
bacterial glycolytic and peptidolytic enzymes referred to as PGN 
hydrolases and autolysins which specific bacterial pathogens use 
PGN degradation to subvert host innate immunity [6]. Bacteria 
have to avoid recognition by the host immune system in order to 
establish a successful infection which bacterial autolysins enable 
the bacteriolyses of bacterial cell walls trim cell surface PGN to 
prevent detection by bacterial innate immune system [7].

 Viruses are obligate intracellular parasites that cause 
infection by invading cells of the body. Their life cycle comprises 
a short extracellular period and a longer intracellular period 
during which they undergo replication. The immune system has 
non-specific and specific mechanism that attack the virus in both 
phases of its life cycle which specific antibodies protect against 
viral infections and play an important role in antiviral immunity, 
mainly during the early stage of the infection [8].

Zinc homeostasis during acute phase response is the 
temporal transfer of serum zinc to the tissues, causing transient 
serum hypokinemia, which is rebalanced during resolution of 
the inflammatory response that intracellularly increased zinc 
can intoxicate engulfed pathogens and acts cytoprotective by 
promotion of neutralizing reactive oxygen species (ROS) and 
nitrogen species (RNS) [9]. 

In this review, firstly, anti-bacterial activities of bacteriolysis 
by Zn2+ ions induced autolytic PGN activation are debated against 
Staphy-lococcus aureus (S. aureus) cell wall as Gram-positive 

bacterium and Escherichia coli (E. coli) cell wall as Gram-negative 
bacterium. Secondly, the zinc-mediated antiviral immunity, zinc-
finger protein, membrane fusion protein and phage endolysin are 
discussed. Lastly, the bacterial and virucidal mechanisms on the 
zinc-binding activated PGN autolysins and on the ZAP, ZBD 
become clarified.

Zn2+ ions-induced PGN autolysins promote anti-bacterial 
activity Molecular structures of S. aureus and E. coli cell walls 
and action sites of PGN autolysins

Bacterial PGN structure of both Gram-positive and Gram-
negative bacteria comprises repeating disaccharide backbones of 
N-acetylglucosamine (NAG) and β-(1-4)-N-acetylmuramic acid 
(NAM) that are crosslinked by peptide stem chains attached to 
the NAM residues [10]. As shown in (Fig.1), the action sites of 
bacterial autolysins are comprised that for Staphylococcus aureus 
(S. aureus) PGN layer cell wall, there are N-acetylmuramidase-
L-alanine amidase and DD-endopeptidase. The other, for 
Escherichia coli (E. coli) cell wall as shown (Figure 2), there 
are endopeptidase of degrading enzyme at lipoprotein of C- and 
N-terminals, and amidase, peptidase, and caboxypeptidase at thin 
PGN layer in periplasmic space [11]. The bacterial cell walls are a 
strong flexible mesh work of PGN that gives a bacterium structural 
integrity, in which to accommodate a growing cell, the walls are 
remodeled by PGN synthesis and PGN autolysin. PGN is the 
main constituent of bacterial cell walls and must be continuously 
synthesized and degraded to maintain the integrity and viability of 
the cells that bacterial cell wall hydrolases of amidase, glycosidase, 
and peptidase display a modular architecture combining multiple 
and different catalytic domains, including some lytic transglycosy-
lases as well as cell wall binding domains [12].In these autolysins, 
zinc-dependent PGN autolysin of amidases may be enhanced and 
induced anti-bacterial vaccine activities.

Figure 1: Peptidoglycan structure and action sites of peptidoglycan 
autolysins against S. aureus PGN layer.
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Figure 2: Molecular structures of outer membrane lipoprotein 
and peptidoglycan layer in the E. coli cell wall, and action sites 
of degrading enzyme of lipoprotein at C- and N-terminals and 
peptidoglycan autolysins

Zn2+ ions induced activated PGN autolysins promote anti-
bacterial activity against Gram-positive bacteria:

S. aureus amidase AmiA shed light on PGN binding and 
cleavage that amiA distinguishes PGN mostly by the peptide, and 
cleavage is facilitated by a zinc-activated water molecule, in order 
to develop new therapeutics against MRSA [13].

The autolytic activity of the recombinant amidase of the Aas 
(autolysin/adhesin of Staphylococcus saprophyticus) is inhibited 
and is neccesary for the C-terminal GW repeats, not the N-terminal 
repeats [14]. Autolysin-mediated lysis-induced bacterial cell death 
can contribute to the bactericidal vaccine activities. Lytic amidase 
autolysin LytA which is released by bacterial lysis, associates 
with the cell wall via its zinc-binding motif that the amidase 
domain comprises a complex substrate-binding crevice and 
needs to interact with a large-motif epitope of PGN for catalysis 
[15]. Suicidal amidase autolysin LytA having both autolysis and 
capsule shedding depends on the cell wall hydrolytic activity 
of LytA that capsule shedding drastically increases invasion of 
epithelial cells and is the main pathway by which pneumococci 
reduce surface bound capsule during early acute lung infection of 
mice [16]. In the biofilms increase as zinc concentrations increase 
and biofilm formation effect as a negative regulator of LytA 
dependent autolysis, zinc availability contributes to the ability of 
pneumococci to form aggregates and subsequently, biofilms [17]. 

The LytB PGN hydrolase responsible for physical separation of 
daughter cells cleaves the GlcNAc-β-(1,4)-MurNAc glycosidic 
bond of PGN building units that cell walls digestion products and 
solubilisation rates might indicate a tight control of LytB activity 
to prevent unrestrained breakdown of the cell wall [18]. The PGN-
remodeling autolysins LytC, LytD, and LytF are expressed in 
the same subpopulation of cells and complete flagella synthesis 
that LytC appears to be important for flagella function, motility 
was restored to a LytC mutant by mutation oef either lon A, and 
LytC, LytD, and LytF autolysins to population heterogeneity in 
B. subtilis [19]. Atl is the major autolysin in S aureus that the 
bi functional major autolysin plays a key role in staphylococcal 
cell separation which processing of Atl yield catalytically active 
amidase and glucosidase domains [20]. The biochemical and 
strucural staphylococcal Atl have successful cloaning, high 
level over-expression, and purification Atl proteins [21]. Major 
Atl autolysin also have an essential role in the early events of 
the fibronectin-binding proteins (FnBPs)-dependent S.aureus 
biofilm phenotype [22]. For the contribution of autolysins of PGN 
hydrolases to bacterial killing, there are N-acetylglucosaminidase 
(AtlA), two N-acetyl-muraminases (AtlB and AtlC) [23]. AtlA is 
the major PGN hydro-lases of Enterrococcus faecalis involved in 
cell division and cellular autolysis and the zinc metalloprotease, 
gelatinase (GelE) of their interplay proposed to regulate AtlA 
function, which N-terminal cleavage was required for efficient 
AtlA-mediated cell division, and AtlA septum localization and 
subsequent cell separation can be modulated by a single GelE-
mediated N-terminal cleavage event [24].

Zn2+ ions induced degrading enzyme of outer membrane 
lipoprotein and PGN autolysins promote anti-bacterial 
activity against Gram-negative bacteria against Gram-negative 
bacteria

Amidase gene (AmiB) catalyzes the degradation of PGN in 
bacteria that the amiB gene was composed of 1,722 nucleotides 
and 573 amino acids which is involved in the separation of 
daughter cells after cell devision and inactivation of the amiB 
gene, resulting in a marked increases of sensitivity to oxidative 
stress and organic acids [25]. Amidase activity of amiC controls 
cell separation and PGN fragments release [26]. Zinc-dependent 
endopeptidases (Eps) are predicted to hydrolyze PGN to facilitate 
cell growth that zinc avaliability affects strong activity of cell 
wall hydrolases, and zur-regulated endopeptidases are present in 
divergent Gram-negative bacteria [27]. Zinc-regulated peptidase 
maintains cell wall integrity during immune-mediated nutrient 
sequestration against Acinetobacter baumannii [28].

 Carboxypeptidases are exopeptidases that remove a 
single amino acid residue from the C terminus of proteins or 
xopeptidases that remove a single amino acid residue from the 
C terminus of proteins or peptides that the carboxypeptidase B1 
of and its evaluation have been high molecular characterization 
for transmission-blocking vaccines (TBVs) against Malaria 
eradication [29]. Metallocarboxypeptidases (MCPs) of the M32 
family of peptidases exhibit a significant hydrolytic activity and 
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different hydrolysis patterns against Trypanosoma brucei or cruzi [30]. Thus, zinc-dependent carboxypeptidase autolysin could adapt 
to be appreciable the anti-bacterial activities. Table 1 represents anti-bacterial activities of bacteriolysis by Zn2+ ions induced activated 
PGN autolysins against Gram-positive thick PGN layer and Gram-negative outer membrane lipoprotein and thin PGN layer cell walls.

Zn2+ Ions Gram-Positive PGN Layer Cell Wall

Zn2+

Zn2+ ions induced PGN autolysins

→ Zn2+, O2－, H2O2, ･OH, ･NO, ONOO－

Zn2+ ions induced activated PGN autolysins

･S.aureus amidase AmiA

･Recombinant amidase of the Aas

･Lytic amidase LytA for Streptococcus pneumoniae

･Pneumococcal autolysin LytA LytC, D, F of PGN remodeling for Bacillus subtilis

･Endopeptidase LytF for bacillus subtilis

･AtlA autolysin for GelE against E. faecalis

･AtlA, AtlB, AtlC autolysins against enterococcus faecalis

･Fusion protein autolysin, MIBRs against S. pneumoniae

･Carboxypeptidase B1 against Anopheles stephensi and for malaria as transmission blocking vaccines

･Metallocarboxypeptidase M32 against Trypanosoma brucei or cruzi

･PBP2a and autolysin mixture against MRSA

Zn2+ ions Gram-Negative Cell Wall

Zn2+

Outer Membrane Lipoprotein Periplasmic Space Thin PGN

at C- and N-terminals Layer

→ Zn2+, O2－, H2O2 → Zn2+, O2－, H2O2, OH－, ･OH

･Amidase gene amiB/LysM ･AmiC in PGN fragment release

･Endopeptidase regulation of ShyA and 
ShyB ･Carboxypeptidase by transmission-

･Outer membrane receptor against 
N.menigitidis blocking vaccines

･ETEC subunit vaccine ･PGRPs or PGLYRPs

･ZnuB against P. aeruginosa. ･D-glutamate auxotrophy against P.

･Preventive vaccine by recombinant

flagella against P. aeruginosa

aeruginosa PA14

･ORT in infectious diarrhoea

･ZnuA against P. aeruginosa

･Recombinant flagella and pili against P.aeruginosa

Table 1: Zinc induced anti-bacterial activity against Gram-positive thick PGN envelope cell wall and Gram-negative lipoprotein and 
thin PGN layer cell wall. 
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N Anti-viral activities on zinc-induced antiviral immunity, 
zinc-finger protein, zinc-binding domain, and membrane 
fusion protein

Zinc-induced antiviral immunity: Zinc is an essential trace 
element that is crucial for growth, development, and the maintenance 
of immune function which zinc status is a critical factor that 
can influence antiviral immunity, particularly as zinc-deficient 
populations are often most at risk of acquiring viral infections 
such as HIV, HCV [31]. Common features possess that enveloped 
viruses enter cells by membrane-fusion protein on the surface, 
fusion glycoprotein on metastable prefusion and interactions with 
neutralizing antibodies. Implications for immunogenic design of 
next-generation vaccines have been shown from the results that 
stable immunogens presenting the same antigenetic sites as the 
labile wild-type proteins efficiently elicit potently neutralizing 
antibodies [32].

Zinc-finger protein: The novel EBV-induced zinc finger gene, 
ZNFEB, including its intron less locus and human protein variants, 
controls entry and exit from cell cycling in activated lymphocytes 
[33]. The designed polydactyl zinc finger protein is prepared 
consisting HIV-1 type integrase fused to the synthetic zinc finger 
protein E2C that the integrase-E2C fusion proteins offer an efficient 
approach and a versatile framework for directing the integration of 
retroviral DNA into a predetermined DNA site [34]. Artificial zinc 
finger fusions were targeted to the high affinity Sp1-binding site, 
and by being fused with TatdMt and POZ domain, they strongly 
block both Sp1-cyclin T1-dependent transcription and Tat-
dependent transcription of HIV-1 [35]. The zinc-finger antiviral 
protein (ZAP) specifically inhibits the replication of certain viruses 
and promotes viral RNA degradation [36]. Zinc finger protein 
Tsip1 that the candidate genes encoded Tsi1‐interacting protein 
1 (Tsip1), a zinc (Zn) finger protein Tsip1 strongly interacted with 
CMV 2a protein, controls Cucumber mosaic virus (CMV) RNA 
replication [37]. The zinc-finger protein ZCCHC3 binds RNA and 
facilitates viral RNA that ZCCHC3 is a co-receptor for the retinoic 
acid-inducible gene-1 (RIG-1) and antigen MDA5 which is critical 
for RIG-1 like receptor (RLR)-mediated innate immune response 
to RNA virus [38]. 

Zinc-binding domain: A novel zinc-binding domain (ZBD) 
is essential for formation of the functional Junin virus envelope 
glycoprotein complex that the envelope glycoprotein of the Junin 
arenavirus (GP-C) mediates entry into target cells through a pH-
dependent membrane fusion mechanism, in which this unusual 
motif may act to retain a cleaved 58-amino-acid stable signal 
peptide (SSP) for its role in modulating membrane fusion activity 
[39]. Entry of the virus into the host cell is mediated by the viral 
envelope glycoprotein, GPC that SSP was retained in GPC through 
interaction with a zinc- binding domain (ZBD) in the cytoplasmic 
tail of transmembrane fusion of G2 subunits that Junin virus 
ZBD displays a novel fold containing two zinc ions, in which the 
structural basis for retention of the unique SSP submit suggests 
a mechanism whereby SSP is positioned in the GPC complex to 
modulate pH-dependent membrane fusion [40].

Viral membrane fusion protein: Enveloped viruses enter 
cells and initiate disease-causing cycles of replication that in all 
cases virus-cell fusion is executed by one or more viral surface 
glycoproteins denoted as the fusion protein, in which the structure 
and mechanisms on viral membrane fusion protein are important 
problems [41]. The membrane fusion reaction, membrane 
interaction, conformational changes of specialized virus envelope 
proteins, and refolding reactions of specific fusion proteins can 
mediate both virus-cell fusion leading to infection and pathological 
cell-cell fusion, in which they are increasingly viewed as targets 
for antiviral intervention [41].

Phage endolysin: Bacteriophage (phage) is a virus that precisely 
infects bacterial hosts that after the completion of a replication 
inside the infected bacterial cell, newly formed phage particles need 
to be released outside the cell with the help of lytic enzymes, these 
lytic enzymes of endolysin, in which endolysins are bacteriophage-
encoded peptidoglycan hydrolase [42]. Phage endolysin of cell 
wall binding domains (CBDs) is characterized in conjuction with 
their domain architecture, (non)necessity for the following lytic 
activity and a high/low specificity of their ligands as well [42]. 
Thus, anti-viral activity of zinc-finger proteins for virus entry and 
replication are represented in Table 2.

Zn2+ ions
Anti-viral activity of Zn2+ in entry and replication

Adsorption/Entry Replication, DNA / RNA

Zn2+

→ Zn2+, ･O2-, H2O2 → Zn2+, ･O2-, H2O2, NO

･EBV-induced zinc 
finger gene

ZNFEB controls entry 
and exit

･ZAP inhibits replication 
of MLV

･ZAP-mediated RNA 
degradation

･ZBD prevent viral 
entry and and

GPC inhibit activate 
membrane

fusion

･Zinc finger: virus decay

･Zinc finger proteinE2C; 
viral DNA

specific sites

･Zn-metalloprotease 
inhibits entry and 

cell-cell fusion

･Zinc finger protein 
Tsip1;Cucumber mosaic 

virus(CMV)RNA 
replication

･Artificial zinc finger 
fusion; HIV-1 transcriptions

Table 2: Anti-viral activity of zinc-finger proteins for virus entry 
and replication.
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Conclusion
Anti-infectious activities of bacteriolyses by Zn2+ ions induced 

activated PGN autolysins and of virucides by zinc-binding viral 
fusion proteins are discussed, and the bacteriolytic and virucidal 
mechanisms are partially clarified. Bacterial peptidoglycan (PGN) 
autolysin Ami A for S.aureus amidase is acted on PGN binding and 
cleavage that amiA distinguishes PGN mostly by the peptide, and 
cleavage is facilitated by a zinc-activated molecule. The autolytic 
activity of the recombinant amidase of the Aas (autolysin/adhesin 
of Staphy-lococcus saprophyticus) is inhibited and is necessary 
for the C-terminal GW repeats, not the N-terminal repeats. Ami 
B catalyzes the degradation of PGN in bacteria, resulting in a 
marked increases of sensitivity to oxidative stress and organic 
acids. Amidase activity of ami C controls cell separation and 
PGN fragments release. In these autolysins, zinc-dependent PGN 
autolysin of amidases may be enhanced and induced anti-bacterial 
activities.

Lytic amidase autolysin LytA associates with the cell wall 
via its zinc-binding motif. The LytB PGN hydrolase responsible 
for physical separation of daughter cells cleaves the GlcNAc-β-
(1,4)-MurNAc glycosidic bond of PGN building units. LytC, LytD, 
and LytF are expressed in the same subpopulation of cells and 
complete flagellar synthesis. Human peptidoglycan recognition 
proteins (PGLYRPs) are novel class of recognition and effector 
molecules with broad Zn2+-dependent bactericidal activity against 
both Gram-positive and Gram-negative bacteria.

Enter toxigenic E. coli (ETEC) is the most common bacterial 
cause of children’s diarrhea, in which antigen and antitoxin 
antibodies that neutralized both toxins that are associated with all 
cases of ETEC diarrhea. Thus, Autolysin mediated bacteriolysis-
induced bacterial cell death can contribute to the bactericidal 
activities. Bacterial autolysins enable the bacteriolyses of bacterial 
cell walls trim cell surface PGN to prevent detection by bacterial 
innate immune system. Autolysin mediated bacteriolysis and zinc 
dependent lysis-induced bacterial cell death can contribute to the 
bactericidal vaccine activities, where PGN autolysins interact with 
biomolecules causing cell apoptosis leading to cell death.

On the other hand, enveloped viruses enter cells and initiate 
disease-causing cycles of replication that in all cases virus-cell 
fusion is executed by one or more viral surface glycoproteins denoted 
as the fusion protein, in which the structure and mechanisms on 
viral membrane fusion protein are important problems. The novel 
EBV-induced zinc finger gene, ZNFEB, including its intron less 
locus and human protein variants, controls entry and exit from cell 
cycling in activated lymphocytes. The designed polydactyl zinc 
finger protein is prepared consisting HIV-1 type integrase fused to 
the synthetic zinc finger protein E2C that the integrase-E2C fusion 
proteins offer an efficient approach and a versatile framework for 
directing the integration of retroviral DNA into a predetermined 
DNA site. The zinc-finger antiviral protein (ZAP) specifically 
inhibits the replication of certain viruses and furthermore, an 
under-standing becomes necessary for ZAP-mediated viral RNA 

degradation. Zinc finger protein Tsip1 controls Cucumber mosaic 
virus (CMV) RNA replication. The zinc-finger protein ZCCHC3 
binds RNA and facilitates viral RNA that ZCCHC3 is a co-receptor 
for the retinoic acid-inducible gene-1 (RIG-1) and MDA5 which 
is critical for RIG-1 like receptor (RLR)-mediated innate immune 
response to RNA virus. Zinc-finger protein, zinc-binding domain, 
and membrane fusion protein specifically inhibit the entry and the 
replication of many viruses. Thus, the membrane fusion reaction, 
membrane interaction, conformational changes of specialized 
virus envelope proteins, and refolding reactions of specific fusion 
proteins an essential steps entry and replication of enveloped virus 
life cycle have been worthy of remark in fascination that these 
diverse viral fusion proteins could be used in next-generation for 
therapeutic intervention in arena viral disease.
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